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LE'ITER TO THE EDITOR 

Finite-size corrections in the non-linear Schrodinger model 

A Berkovich and Ganpathy Murthy 
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony 
Brook, NY 11794-3840, USA 

Received 21 January 1988 

Abstract. A method based on the Euler-Maclaurin formula is proposed to obtain all 
finite-size corrections to the energies of the ground and excited states for the one- 
dimensional Bose gas with delta function interactions. Scaling dimensions for all gapless 
states and some states having a macroscopic momentum are obtained. 

The one-dimensional Bose gas with pairwise repulsive delta function interactions (the 
so-called non-linear Schrodinger ( NLS) model) is known to be an exactly integrable 
dynamical system with a second quantised Hamiltonian 

where g>O is the strength of the contact interaction and 5 is the chemical potential. 
The field operators satisfy canonical commutation relations 

[4(x) ,  4 ( y ) l =  [4'(X), 4t(Y)l = 0 

[d(x) ,  4t(Y)1 = 6(x - Y h  
(2) 

This model has been solved by the Bethe ansatz technique [ l ]  and more recently 
with the help of the quantum inverse scattering method [2]. Explicit Green function 
calculations [3,4] show that the NLS model undergoes a phase transition at zero 
temperature. Therefore, one expects this model to exhibit local scale (conformal) 
invariance at zero temperature for distances much larger than the inverse Fermi 
momentum. 

The Hilbert space of a field theory possessing conformal invariance has two sets 
of mutually commuting Virasoro operators, which are the generators of conformal 
transformations 

[ L m  9 L n  I = ( m  - n ) L m + n  + h c  m( m2 - 1 ) a m +  n,o 

(3) [Lm,  L,,]=(m - n ) L m + . + ~ c m ( m 2 - 1 ) ~ m + n , ,  

where c is called the conformal anomaly. The L, and J?, are the coefficients in a 
Laurent expansion of the analytic and antianalytic pieces of the stress tensor 

Unlike the situation for c <  1 [5-71, for c 2  1,  unitarity does not constrain either c 
or the scaling dimensions of the primary operators (building blocks from which other 
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operators can be constructed). In fact, for c =  1 one expects to find an infinite set of 
primary operators with non-trivial dimensions which depend on the coupling constant 
and at least one operator with dimension two (the marginal operator) which moves 
the system along the line of fixed points. 

In parallel with the formal developments [5,6], Cardy and collaborators [8] showed 
that finite-size corrections to the eigenvalues of the transfer matrix (or the quantum 
Hamiltonian) of a conformally invariant model were directly related to the conformal 
anomaly and the scaling dimensions of operators in the model. More precisely 

-- -e,-- EO(L) 
L 6 L2 

where Eo( L )  is the ground-state energy of a system of size L, em is the energy per unit 
length in the thermodynamic limit, c is the conformal anomaly and N f  is a normalisation 
factor. Nf is defined in such a way that the equations of motion are conformally 
invariant. 

Also for each operator 0, with, scaling dimension x, and spin sa, there exists a 
tower of states in the spectrum of H with energies E;.( L )  and momenta Pi , (  L )  given 
by 

2a(x ,+ j+ j ’ )  
L 

E;,( L )  = E,( L )  + 

2a( s, + j  - j ’ )  
L 

P;.( L )  = 

where j ,  j ’  are non-negative integers. 
For exactly solvable conformally invariant models these equations have recently 

been used to calculate exact scaling dimensions of various operators [9-141. Especially 
interesting is the method of Woynarovich and Eckle [ 141 based on the Euler-Maclaurin 
formula. This method can be applied to find all higher-order finite-size corrections in 
a systematic way. 

In this letter we apply the Euler-Maclaurin formula 

to analyse the finite-size corrections to the Bethe ansatz equations for the NLS model, 
which, for periodic boundary conditions, are [ l ]  

where the pseudomomenta Aj  are all real and distinct. Taking the logarithm (with an 
appropriate choice of branch) we get a system of coupled equations that the 
pseudomomenta satisfy: 

N 

where 

T - 2  tan-.‘ g l  A A > O  
- ~ + 2  tan-’ g/(-A) A < O  

e(A) = (9) 
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and nj are a set of distinct integers (for odd numbers of particles N )  or half-odd 
integers (for even N ) .  The energy and momentum are 

N 

E =  c ( A ; - 5 )  
j = l  

N 

P = 1 Aj.  
j = l  

For the ground state the n, are consecutive integers (or half-odd integers) lying in 
the range -:( N - 1 )  s nj s +( N - 1 ) .  We define, after de Vega and Woynarovich [ 1 1 1 ,  
a function zN ( L ,  A )  

where the A k  are the solutions to (roots of) the Bethe ansatz questions. Lz (L ,  A )  
becomes an integer (or half-odd integer) when A coincides with a root. 

We can now define a density for the roots as 

In the thermodynamic limit (L ,  N + CO; N /  L = D = density kept fixed) the root 
density p,(A) satisfies a linear integral equation [ l ]  

where 

K ( A ,  CL)=2g/[g2+(A -d21 ( 1 3 )  
and q is the Fermi momentum which is fixed by the condition that the configuration 
of consecutive integers mentioned above be a true minimum of the energy. 

To analyse the finite case, we apply the Euler-Maclaurin formula to (9) to get, for 
the ground state, to order 1/L2 

zm - l / 2 L  A(L' "'+-!- [ 8[A(L,  z ) -A(L ,  z ' ) ]  dz' 
2T 2T  - r , + l / 2 L  

1 
4TL 

+ - {e[ A (L ,  Z )  - A (L ,  Z, - 112 L ) ]  + e[ A (L ,  Z )  - A (L, -z, + 112 L ) ] }  

1 
24rL2 

-- { K [ A ( L ,  z ) - A ( L ,  Z ,  - 1/2L)]A'(L, Z ,  - 1/2L) 

- K [ A (L, Z )  - A (L ,  - Z, + 1 / 2  L ) ]  A '[ L, -z, + 1/2L)}  + 0 

where z ,  = N / 2 L  = 012 .  

integrals: 

'I 2T - z , + l / 2 L  e d z ' = l j ' .  2T -zm @dz'--!-[zm 2T z m - I / 2 L  8 dz'-L 2.rr - - L m  

We can now extend the limits of integration to [ -z , ,  z,] and remove the extra 

z,,, - 1 / 2  L - :" t+ l /2L 

8 dz'. ( 1 5 )  
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z (L ,  A) is an analytic function since it is the sum of finitely many analytic functions. 
Thus its inverse A (L, z )  is also analytic and we can expand the integrand in the two 
extra integrals in a Taylor series around z’ = fz,. (In this model even z,(A) and A,(z) 
are analytic [l].) We finally get 

We now make the ansatz 

which, after changing variables from z to A,( z )  and subtracting a similar equation for 
the infinite case, leads to an integral equation for g , :  

The integral operator on the left can be written in the form (1 - k/27r) where 

a.m) = I’ K ( A ,  P ) f ( P )  dP. 
-4 

We now introduce the inverse operator in the form ( 1  + G )  where 

( i@f)(A)  = M(A,  P l f ( P )  dP. 

The kernel M satisfies the equation 

Using the properties of the kernel we get 

In terms of this function the finite-size root density can be written as 

To compute the finite-size correction to the ground-state energy we apply the Euler- 
Maclaurin formula to the energy (equation (10)) and after the usual manipulations 
we get 

To proceed further we define the dressed particle energy & ( A )  [ l ]  which satisfies 

[ ( l -  k/2r)&](A) = A 2 - C  

&(q) = 0 
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and the velocity of sound [ l ]  

2q+ITq 2AM(A, q )  dA V=- 
d P ( A )  I h = q  = 2 T p m (  4 1 

where P ( A )  is the dressed particle momentum. We get finally 

Since we know from the correlation functions [15] that N,= V, we can immediately 
identify c = 1 .  

Now we proceed to find the finite-size corrections to the excited-state energies and 
momenta. 

We are mainly interested in states which become gapless in both energy and 
momentum in the thermodynamic limit. Such states can be produced in two ways. 
Firstly we can remove particles from the ‘Fermi’ sea and place them outside to create 
particle-hole pairs near + q  and -9. Secondly we can add some particles to the ground 
state. 

We can also consider states which are gapless in energy but not in momentum by 
shifting all the integers (or half-odd integers) by an integer. Such states produce 
oscillatory behaviour superimposed on power law decays in the correlation functions. 

The most general excited state is produced as follows. We add r particles to obtain 
the ground state for ( N +  r )  particles. We then shift all the integers characterising the 
roots by t .  Finally, we create particle-hole pairs ( n p n h )  near f q  (labelled by s,) at 
the following positions: 

np(sr) = *f( N - 1 + r)  + t f n , ( s , )  

nh(s,) = * ; ( N -  1 + r ) +  t 7 m,(s , ) .  

The dimension and spin of these states are obtained by methods described above 
to be 

S=2rt+C ( n + ( s + ) +  m + ( s + ) ) - C  ( n - ( s - ) +  m - ( s - ) )  
s+  S- 

xp = a (  1 + C (  q ) y  

C ( A ) = - ( 1 / 2 ~ ) ( 1 + k ) ( e ( A  - q ) + O ( A + q ) )  

where the coefficient of t Z  in x has been identified as 1/4xp to order l/g5. 
We can now identify a few operators associated with these states. The marginal 

operator is associated with the state t = r = 0 and one particle-hole. pair near + q  and 
-4 each with n+(s+)  = n - ( s + )  = 1 and m,(s , )  = 0. It has dimension 1 and spin 0. The 
current operator is associated with the following three lowest states: (a) t = r = 0, 
n,(s , )  = 1;  m, = n, = 0, with dimension 1 and spin f l .  (b) t = 1,  r = n, = m* = 0, with 
dimension 1/4x,, spin 0 and producing oscillatory behaviour because it has a macro- 
scopic momentum. The field operator is associated with r = 1, t = n, = m, = 0 and has 
dimension xp and spin zero. 

Our exact result for xp agrees with that of Popov [15] up to fifth order in a ( l /g )  
expansion. We hope to show this equivalence exactly. 
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The general excitation is similar to a spin-wave excitation with quantum number 
r combined with a vortex excitation with quantum number t in the Gaussian model [ 161. 

We have also calculated some higher-order corrections to the energies and found 
only integer powers of 1 /  L as opposed to the X X Z  chain [ 10, 141. The physical reason 
for this is that only operators which conserve particle number and have no macroscopic 
momentum can appear in the difference between the fixed point and starting Hamil- 
tonians. This corresponds to operators in the r = 0, t = 0 sector which contains only 
integer dimensions in the NLS model. In the X X Z  model, this sector contains string 
excitations with non-integer dimensions and these appear in the corrections to the 
ground-state energy [ 10,141. 

We believe that this technique can be generalised to non-trivial boundary'conditions 
in a straightforward manner. One can also get more precise information about the 
coefficients in the operator product expansion and the irrelevant operators in the 
starting Hamiltonian. This information can be used to get the corrections to scaling 
for the Green functions and to ascertain the region of validity of asymptotic conformal 
behaviour. We hope to present these results in a forthcoming publication. 

We wish to thank Dr F C Alcaraz and Dr J Lowenstein for stimulating conversations 
and Dr J H H Perk for support and encouragement. This work is supported in part 
by NSF grant PHY 85 07627. 

Note added. After the completion of this work it was brought to our attention that similar work appears in 
[ 171. However, general excitations are not considered and it is unclear whether their method can be extended 
to get all higher-order finite-size corrections since no details are given. 
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